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ABSTRACT

This thesis focuses on the voltage collapse dynamics of power systems. It is well 

known that continuation power flow techniques can determine voltage stability limits for 

steady behavior of power systems. But what tools are available for transient behavior?

Electromechanical Transients are studied using Transient Stability Simulators with 

differential-algebraic equation (DAE) models employing phasor network variables. 

While these simulators can follow the electromechanical transients (e.g., voltage and 

power swings) due to line switching with loads modeled as constant impedance, they may 

fail to converge for systems with constant power loads. This non-convergence has been 

attributed to a transient voltage collapse in the literature. However, the key issue here is 

that the simulation stops and the voltage collapse trajectories cannot be examined in 

detail. Examining the voltage collapse trajectories is important for differentiating local 

area collapses from widespread collapses, mitigating the sequence of events leading to a 

widespread cascading outage, and correctly estimating the transfer capability limit of 

power systems. This thesis presents a methodology for examining the voltage collapse 

trajectories by modeling constant power loads as voltage dependent impedance loads.

Results on a two-bus system with single phase instantaneous time domain 

simulation show that the voltage collapse trajectories can be examined via the proposed 

voltage dependent impedance load. Furthermore, the voltage dependent impedance load 

model has also been implemented in three phase instantaneous time domain simulation.

Implementation of such a load model back in the transient stability simulation with a 

DAE model resolves the non-convergence problem and the voltage collapse trajectories 

can be tracked.
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Lastly, an analysis of the non-convergence of the transient stability simulations

with a DAE model for switching with constant power loads is discussed using the 

continuation power flow method.
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CHAPTER 1

INTRODUCTION

1.1       Background

The voltage collapse issue is an important problem for electric utilities to prevent. 

As power systems are operated at increasing loading levels, voltage collapse becomes 

more likely. Today’s increased loading levels are due to the fact that the system load is 

increasing, yet transmission line capacity is stagnant. Several constraints such as 

economic, environmental, and territorial issues are the cause of such a mismatch. 

The traditional ways of analyzing transfer capability limits with respect to voltage 

collapse are based on the steady state power flow calculations. The results are expressed 

in the form of P-V and Q-V curves which illustrate the steady state stability limits of the 

system. Voltage collapse occurs immediately beyond the tip or the nose of these curves 

and hence these analyses are useful for prevention of steady state voltage collapse. The

methods assume that the load and generation variations are  small and the interconnecting 

transient state can be ignored. For large disturbances like tripping of transmission lines or 

generator outages, steady state methods reveal the pre and post-contingency equilibrium 

points but do not have any information about the interconnecting transient.

The transient is characterized by voltage and current swings before settling down 

to the operating point, assuming the system is stable. During the transient, the system can 

lose stability in several ways but this work focuses on voltage collapse. Transient 

Simulation, also referred to as Time domain integration, is typically used for analyzing 

the transient response of the system due to an event disturbance. The work summarized in 
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this thesis involves transient analysis of voltage collapse in power systems using time 

domain integration techniques.

1.2      Literature survey

Voltage instability incidents have been reported in power systems around the 

world [1], [2] and hence it becomes increasingly important to study the mechanism of 

voltage collapse. A survey on the literature related to voltage collapse reveals that most 

of the work is on steady state voltage collapse. Venikov et al. [3] were the first one to 

suggest a criterion for steady state voltage collapse based on sensitivity analysis. Kwanty 

et al. [4] applied the bifurcation analysis to the load flow equations and showed that 

voltage collapse occurs at a static bifurcation point. Tamura et al. [5] explained that the 

load flow solutions undergo saddle node bifurcation at the voltage collapse point. Since 

then a variety of tools such as PV and QV curve analysis, modal analysis, and sensitivity 

analysis methods have been proposed to estimate the steady state voltage collapse point

[6]-[8].

Voltage collapse also has been explored using the system dynamics (generator 

models based on differential equations, excitation limits, load dynamics, tap changing 

transformers) [7]-[9]. In [9], the voltage collapse trajectories at the saddle node 

bifurcation point are captured using dynamic analysis for small load variations. A 

constant power load in parallel with a dynamic induction motor load is used as the load 

model. The dynamics of voltage collapse for line tripping considering OLTC and over-

excitation limits of the generator are discussed in [10]. The load model used is an 

aggregate load model based on voltage exponential. In [11], an index for detecting 

dynamic voltage collapse is proposed.
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1.3       Transient stability simulators

Dynamic analysis for a large scale power system is typically done by transient 

stability simulators. Traditionally, these simulators are used to observe the response of 

the mechanical shafts of the rotating machines after a disturbance. However, in this 

thesis, we are using the modeling and solution algorithm for Transient Stability to capture 

voltage collapse dynamics. Transient Stability of the system on events like faults, line 

switching, generation and load outages is determined by integrating the system equations 

in time. The equations describing the system are of the form

                                                              
( , , )

0 ( , )

x f x y u
g x y

 
 

�
                (1.1)

where, the differential equations describe the mechanical behavior of the machines and 

the algebraic equations are the stator current and network equations. In such a 

formulation, the network voltages and currents are represented using phasors. The step 

size used for the integration methods may vary from one millisecond to one-tenth of a

second. Due to the small step size used and the extensive generator, load and other 

control equipment modeling done, the electromechanical transient simulation is 

computationally intensive compared to the static analysis methods. Examples of 

commercial packages are PSS/E, EUROSTAG and PowerTech TSAT.
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1.4    Motivation

       

Figure1.1 Continuation power flow curves for a line outage

Figure 1.1 shows an example of PV curves for the normal case and line outage 

case from a continuation power flow. *
normalO  is the loading limit for the system with all 

lines in service and *
ctgcO  is the loading limit with one of the transmission lines out of 

service. Assume that for a given loading, the system is operating at point A with all the 

lines in service. The continuation power flow plots show that if a line is tripped then there 

exists a post-contingency operating point, B. As seen from Fig. 1.1, the system is 

operating at a high loading level and we want to investigate whether the system can go 

from point A to point B through the transient. We assume that the load is trying to absorb 

constant power throughout the transient. 
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switcht
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Figure 1.2 Stopping of transient stability simulation

When the transient response is analysed by a transient stability simulator, the 

simulation may stop due to non-convergence. As can be seen in the example plot in 

Figure 1.2, the voltage at which the simulation stops is above 0.6 pu. While such a 

stopping of the simulation has been attributed to transient voltage collapse in the 

literature, it still does not confirm that it is a voltage collapse. Moreover, there are some 

important unanswered questions left,

What is the reason for having no solution for the system?

How can the simulations be continued to follow the system trajectories?

Finding answers to these questions is the main motivation behind this thesis. 

While the first one answers the reason for the failure, the second one is more important 

for analyzing the events that may follow. The stability of the system, the operation of 

protective devices, the generator response, and the possibility of cascading outages are 

some of the critical issues that need to be answered. The voltage collapse cascade 

phenomenon is still a relatively unexplored domain in power system analysis. Currently, 

the industry predicts the potential of cascading outages based on heuristics or based on 
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experience. However, there is no tool that can follow the sequence of events leading to a 

cascade or the cascading process itself for heavily loaded systems with constant power 

loads.

1.5 Capturing local voltage collapse and transfer capability limit

Capturing the voltage collapse trajectories is important for differentiating local 

and widespread voltage collapses in large scale power systems. The static methods 

cannot capture local voltage collapse because the PV curves turn around at all the buses 

at the collapse point. The distance to steady state loading limit is also known as the 

distance to collapse and it determines the power transfer capability limit or the maximum 

power transfer for a given transfer direction.

In contingency ranking with respect to voltage collapse, contingencies are ranked 

based on their distance to collapse. The contingencies showing a small distance to 

collapse are ranked at the top of the contingency list and the transfer capability limit of 

the system corresponds to the shortest distance to collapse. An illustration of the above 

discussion is shown in Figure 1.3

Figure 1.3 Continuation power flow curves for a system whose transfer capability limit is 
severely restricted by a contingency having a small distance to collapse

1

*
ctgcO *

normalO    O

      

V

2

*
ctgcO
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In Figure 1.3, *
normalO  is the distance to collapse with all lines in service,

1

*
ctgcO with 

one of the lines out and 
2

*
ctgcO  corresponds to the contingency having the shortest distance 

to collapse. The contingency with a distance to collapse 
2

*
ctgcO is ranked at the top of the 

contingency list and the transfer capability limit for the system is set to the post-ctgc 

steady state loading limit for this contingency. As seen, the transfer capability limit for 

the system is significantly reduced because of the small distance to collapse. However, if 

this particular contingency causes just a local voltage collapse then it is not a serious 

threat to the system. 

If contingency 2 were to occur, the load bus experiencing the localized voltage 

collapse would be isolated from the system by protective devices, thereby bringing the 

system back to a stable operating condition with increased distance to collapse. Hence, 

identification of such local voltage collapses is necessary for properly predicting the 

impact of contingencies. Moreover, a better understanding of the contingency impacts 

will enable the industry to better measure the transfer capability limits of large scale 

power systems with respect to voltage collapse.

1.6       Instantaneous time domain simulators

All electrical circuits exhibit electromagnetic transients during switching. The 

power system with long transmission lines and various electromagnetic components 

exhibits very complex behavior during switching or lightning strikes. The study of this 

behavior is done using the electromagnetic or instantaneous time domain simulators. In 

the solution method, instantaneous voltage and current waveforms are used instead of 

phasors for analysis. The network equations are expressed in differential form along with 
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the differential equations for the machines. The time step ranges from 10 us to 1000 us.

While instantaneous time domain simulation could be used to capture the voltage 

collapse dynamics, the very detailed modeling required for such studies and the time

frame of interest (microseconds) are such that the computation is extremely high. Thus, 

even with today’s powerful computers, very large portions of the power grid cannot be 

studied at one time for its electromagnetic behavior. In case of widespread blackouts due 

to cascading outages, we need to model very large regions of interconnected power 

systems. Examples of commercial packages are EMTP, PSCAD/EMTDC, ETAP and 

Power System Blockset in Simulink.

1.7      Chapter outline

Chapter 2 reviews the modeling and solution algorithms used in static voltage

stability analysis of power systems. Two tools for static voltage stability analysis; power 

flow and continuation power flow are discussed.

The modeling and solution algorithms for Transient stability simulators are

discussed in Chapter 3.

Chapter 4 describes the modeling of transmission lines and generators for 

instantaneous time domain simulation. The model of a load specified as constant PQ load 

in instantaneous time domain simulation is developed and discussed in this chapter.

Chapter 5 presents the simulations done, discussion of the results and the 

conclusions drawn from it.

Chapter 6 summarizes the contributions of this thesis and discusses the future 

work intended.
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CHAPTER 2

STATIC VOLTAGE STABILITY ANALYSIS

The aim of the static methods is to find the steady state voltage stability limit of a 

system. The results are based on a series of power flow solutions for small disturbances. 

The small disturbances typically used are small variations in loading or generation. The 

assumption used in the static methods is that the system frequency remains constant. 

Under such an assumption, the total generation equals the load plus losses and hence a 

power flow solution can be applied for determing the stability of the system. Many 

contingency ranking methods are also based on the static analysis of power systems. The 

ranking is done by analyzing the pre-contingency and post-contingency distance to 

collapse.

The modeling of three basic elements of a power system; generators, loads and 

the transmission network is discussed in Section 2.1. Section 2.2 describes the solution 

methodologies used in two static voltage stability analysis tools; power flow and 

continuation power flow.

2.1      Modeling

The modeling of the various elements discussed in this section is based on the 

assumption that the three phase system is balanced under steady state conditions. Using 

this assumption, a per phase analysis can be done.

2.1.1   Constant power loads. Load modeling is the most critical issue in the simulation 

of a power system due to its diversity and composition. The net load connected to any 

bus comprises of a large number of diverse devices like refrigerators, heaters, pumps, 
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lamps, machines etc. Moreover, the load composition changes according to weather, time 

and economy. Hence, it is impractical to represent individual component characteristics 

for large scale system studies and the net load seen at substations or bulk delivery points 

is considered.

The estimation of the system load is done on an hourly or a daily basis to schedule 

the required generation. Thus, the loads are represented as constant power or constant PQ 

loads. These are modeled as negative power injections at the load buses.

2.1.2 Synchronous generators. Synchronous generators are the main source of electric 

energy in a power system. For a system to be stable, the generators in the system should 

operate in synchronism. The modeling of the generators from a system perspective 

depends on the disturbance level and the state of the power system. For steady state 

conditions and small disturbances, like small variations in loading or generation, the 

generator frequency is assumed to remain near about constant. Therefore, the dynamics 

of the generators are ignored and the generators are represented by their power output in 

static analysis. These are modeled as positive power injections at the generator buses. 

The generator buses are distinguished as either Slack or PV buses. The generators 

connected to PV buses have specified active powers and they maintain constant generator 

terminal voltage magnitude. These generators are assumed to have ample reactive power 

to support constant voltage magnitude at their terminals. However, if the generator 

encounters its reactive power limit then the generator voltage magnitude cannot be 

maintained constant and the buses are treated as PQ buses with fixed active and reactive 

power generation. Generators connected to slack bus pick up the extra generation and 

system losses. Their terminal voltage magnitude and angle is controlled to be constant.
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Table 2.1 Generator bus types

Bus Type Constant 

Parameters

Variable 

Parameters

Slack ,V T ,g gP Q

PV ,gP V ,gQ T

2.1.3   Transmission line network. Transmission network is the heart of a power system. 

Electrical power is transferred from generating stations to consumers through overhead 

lines and cables. The characteristics of a transmission line are determined by four 

parameters; series resistance Rc , shunt conductance Gc , series inductance Lc and shunt 

capacitance Cc  with the parameters being per unit length parameters. These parameters 

are called the distributed parameters. In a line of length l, 2l differential equations need to 

be solved to describe the transmission line behavior. However, for a system analysis, the 

voltages and currents at the ends of the line are important. This introduces the concept of 

knowing the effective parameters as seen from the line ends and lumping the distributed 

parameters to ease the analysis. The lumped parameter representation of the line is 

described in this section. This type of line modeling is used for the static analysis and 

transient stability studies. The lumped parameter representation is valid for medium 

length lines. For longer lines and for more accurate representation, modeling is based on 

the distributed parameters itself. This distributed parameter line model is deferred to

Chapter 4. The classification of lines and the associated modeling is given in Table 2.2.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


12

Table 2.2 Line classification and modeling

Line type Length in km. Modeled by

Short l < 80 Series impedance

Medium 80 < l < 200 Nominal pi model

Long l > 200 Equivalent Pi Model,

Distributed parameter line

If l is the length of the line, z r jx{ � is the series impedance per unit length and y 

g jb{ � is the shunt admittance per unit length, then by multiplying these parameters by 

the line length a nominal lumped parameter model is obtained. For long transmission 

lines or for better accuracy, an equivalent lumped parameter model is used instead of 

nominal lumped parameter model. The equivalent lumped parameter model is based on

the characteristic impedance, CZ , propagation constant, J , and the line length. Typically,

the shunt conductance of transmission lines is very small and is ignored.

These lumped parameters can be connected in a S  or a T configuration to model 

the transmission line. The S  model is the preferred choice of transmission line model in 

static analysis and transient stability simulators with a DAE model. Figure 2.1 shows the 

S model of a transmission line. The sending end and the receiving end voltage, current 

expressions can be related by equation (2.1) as 

                                       
/ 2

/ 2
R

VI Y jB Y ss
Y Y jB VI R

ª ºª º � �ª º « » « » « »� � « »« » ¬ ¼¬ ¼ ¬ ¼

GG

GG                                       (2.1)

In compact form, (2.1) can be written as I YV 
G G G
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For a nominal pi model,

Y yl{ ,

B bl{ .

For an equivalent pi model,

1
sinhC

Y
Z lJ

{ ,

2 tanh / 2

C

lB
Z
J

{

Figure 2.1 S Model of a transmission line

2.2       Solution methods

This section discusses the solution methods for power flow, continuation power 

flow. Both these methods are used for the steady state analysis of power systems. 

2.2.1 Power flow. A power flow finds the steady state operating point for the power 

system. It solves for the bus voltage magnitudes and phase angle, reactive powers and 

2
B

2
B

     Y

   RV
G

   SI
G

    RI
G

SV
G
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voltage phase angles at generator buses. Studies involving power flow include slow 

variation of loads over an hour, day etc or planning studies. During such studies, the load 

is assumed as constant PQ because the load is fixed for a particular time. Power flows are 

also used for initializing the transient stability simulations. The solution methodology is 

discussed in the succeeding paragraphs.

Given a power system with N buses, the complex voltage at bus k can be 

represented as 

1,...,kj
k k k kV E jF V e k NT �      
G

The complex power injection into bus k can be represented as 

1,...,inj inj inj
k k kS P jQ k N{ �    

The real power injection can be represented in terms of real power generator and 

load respectively

inj G D
k k kP P jQ �

The series complex admittance between bus k and l can be represented as

1,...,kl kl klY G jB k N{ �     

The sum of all the complex admittance connected to bus k can be represented as

1,...,kk kk kkY G jB k N{ �     

The power system admittance matrix, called ybus, is built by Ykl and Ykk. The 

power flow equations can be stated via the principle of complex power conversion. 

The specific complex power injection into bus k, applying can be represented as 

*inj
k k kS V I 
G G G

            *

1

( )
N

k kl l
l

V Y V
 

 ¦
G G G
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1

( )k l

N
j j

k kl kl l
l

V e G jB V eT T�

 

 �¦

                                                      ( )

1

( ) k l

N
j

k l kl kl
l

V V G jB e T T�

 

 �¦

Separating into its real and imaginary parts from the above equation, the real 

power equation has the real injection into bus k, labeled inj
kP , on the left hand side and the 

real power flow out of bus k on the right hand side. The reactive power equation has the 

reactive injection into bus k, labeled inj
kQ , on the left hand side and the reactive power 

flow out of bus k on the right hand side,

1

[( cos( ) sin( )]
N

inj
k k l kl k l kl k l

l
P V V G BT T T T

 

 � � �¦                         (2.2)

         
1

[ sin( ) cos( )]
N

inj
k k l kl k l kl k l

l
Q V V G BT T T T

 

 � � �¦                      (2.3)

The real and reactive power flow at bus k can be written as

                    
1

[( cos( ) sin( )]
N

inj
k k l kl kl kl kl

l
P V V G BT T

 

 �¦                                         (2.4)

                    
1

[ sin( ) cos( )]
N

inj
k k l kl kl kl kl

l
Q V V G BT T

 

 �¦                                           (2.5)

where kl k lT T T �

In equations (2.4) and (2.5), the unknowns are the voltage magnitudes, phase 

angles and generator powers. Thus, there are 2n equations and 4n unknowns. Also, the 

ybus matrix for the entire system is singular. To get a solution for the system, some of the 

parameters are fixed and the buses classified accordingly. The classification of the buses 

is given in Table 2.3
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Table 2.3 Classification of network buses

Bus Type Constant 

Parameters

Variable 

Parameters

Slack ,V T ,g gP Q

PV ,gP V ,gQ T

PQ ,d dP Q ,V T

By classifying the buses into different categories and fixing the variables, the 

number of unknowns equals the number of equations and the system can be solved.

2.2.2   Continuation power flow. Continuation methods or branch tracing methods are 

used to trace a curve given an initial point on the curve. These are also called as 

predictor-corrector methods since they involve the prediction of the next solution point 

and correcting the prediction to get the next point on the curve. The continuation process 

can be diagrammatically shown as given below:

Predictor Corrector1 1 1 1ˆˆ( , ) ( , ) ( , )j j j j j jx x xO O O� � � �����o ����o

where, ( , )j jx O  represents the current solution, 1 1ˆˆ( , )j jx O� �  is the predicted 

solution and 1 1( , )j jx O� �  is the next solution on the curve.

Consider a system of n nonlinear equations ( ) 0f x   and n unknowns , 1:ix i n . 

By adding a controlling variable O and one more equation to the system, x can be traced 

by varyingO . O  is called the continuation parameter. The resulting system ( , ) 0f x O  

has n + 1 dimensions and has n + 1 unknowns. The additional equation is a parameterized 
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equation which identifies the location of the current solution with respect to the previous 

or next solution. The different kinds of parameterization used are

x Physical Parameterization: using the controlling parameter O  itself, in which 

case the step length is O' . While this parameter has the advantage of having 

physical significance, it encounters difficulties at turning points.

x Local Parameterization: uses either the controller parameter O or any 

component , 1:ix i n . The step length in this case is ix'  or O' .

x Arc Length Parameterization: employs arc length along the solution curve to 

perform parameterization, the step length in that case being J'

2 2

1
{ ( ( )) ( ( )) }

n
i ii

x xJ J O O J
 

'  � � �¦

All the above parameterizations can be used as the additional 

equation ( , ) 0p x O  , to formulate an extended system having n + 1 equations.

The predictor is used for predicting the next solution. The better the prediction, 

the faster is the convergence to the solution point. Tangent predictors are one of the types 

of predictors used in continuation methods. They give a very good approximation to the 

next solution point if the curve is nearly flat. If  ( , )j jx O  is the current solution, then the 

tangent to the curve is given by ( , )j jf x O� . Once the gradient is found, the next step is to 

find the magnitude and the direction of the unique tangent vector. The tangent vector is 

given by the solution of the linear system given in equation 2.6

                                       
0( , )

1

j j

T

f x
z

u
Oª º� ª º

 « » « »
¬ ¼¬ ¼

                                     (2.6)
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u is an n + 1 dimensional vector with all elements equal to zero, except n + 1 

element.. Norm two normalization is further done to normalize the unique tangent 

vector z . The approximation 1 1ˆˆ( , )j jx O� �  for the next solution 1 1( , )j jx O� �  is given by 

              1 1( , ) ( , )j j j jx x zO O V� �  �                                             (2.7)

Once the predictor gives an approximation 1 1ˆˆ( , )j jx O� � , the error must be corrected 

to get the next solution 1 1( , )j jx O� � . Newton’s method is widely used for the solution of 

the nonlinear system due to its fast convergence property and can be used as a corrector. 

Continuation methods are used in power systems to determine the steady state 

stability limit. The limit is determined from a nose curve where the nose represents the 

maximum power transfer that the system can handle given a power transfer schedule. The 

power flow equations are modeled as 

( )
( ) 0

( )

inj

inj

P x P
g x

Q x Q
ª º�

  « »�¬ ¼
    (2.7)

 here ( , ) 1,...,i ix V i NT{      .

To determine the steady state limit, the power flow equations are restructured as 

( , ) ( )f x g x bO O{ �                                                        (2.8)

where b is the vector of power transfer given as

ˆ

ˆ

inj inj

inj inj

P P
b

Q Q

ª º�
{ « »

�« »¬ ¼

The effects of the variation of loading or generation can be investigated using the 

continuation method by formulating the b vector appropriately.
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CHAPTER 3

TRANSIENT STABILITY SIMULATORS

Static Analysis gives a measure of the steady state voltage stability limits of the 

power system. However for events such as line outages, these methods only determine 

the equilibrium of the pre-contingency and post-contingency states but do not give any 

information about the transient i.e., the connecting transient state between the two steady 

states is completely ignored. A voltage collapse can occur during the transient following 

a contingency and the transient response needs to be examined. One way of analyzing the 

transient is by observing the system trajectories in time. Transient Stability Simulators 

with a DAE model is the preferred choice for such a time domain analysis. These 

simulators are also called electromechanical transients simulators as they are typically

used for assessing the transient stability of generators. Electromechanical transients 

simulators use algebraic power flow equations for the network quantities and differential 

equations governing the generator dynamics. This differential algebraic model, 

abbreviated as DAE, and its solution methodology are discussed in this chapter. These 

equations are from [12] which has a detailed description of Transient Stability

Simulation.

3.1      Differential-algebraic model

The differential-algebraic equations for an m machine, n bus system with a the 

IEEE type I exciter model are given as

3.1.1 Differential equations. The differential equations for a detailed two-axis 

generator models at m buses are
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                                     i
i s

d
dt
G Z Z �                                                                 (3.1)

                           � � � �' ' '2 i i
Mi di di qi di di qi i i s

s

H d T E I X X I I D
dt
Z Z Z

Z
 � � � � �                      (3.2)

                                   � �
'

' ' 'qi
doi qi di di di fdi

dE
T E X X I E

dt
 � � � �                                          (3.3)

                                  � �
'

' ' 'di
qoi di qi qi qi

dET E X X I
dt

 � � �                                                   (3.4)

                                 � �� �fdi
Ei Ei fdi Ei fdi Ri

dE
T K E S E V

dt
 � � �                                          (3.5)

                                          fi Fi
Fi fi fdi

Fi

dR KT R E
dt T

 � �                                                       (3.6)

                            � �Ri Ai Fi
Ai Ri Ai fi fdi Ai refi i

Fi

dV K KT V K R E K V V
dt T

 � � � � �                        (3.7)

where 1,...,i m 

These equations are for a two-axis machine model with saturation, subtransient 

reactances and the stator transients neglected. The governor dynamics are also not 

modeled resulting in constant mechanical torque input. The limit constraints on the 

voltage regulator output are also neglected. A linear damping term is assumed for the 

friction and windage torque. Equations (3.1)-(3.4) represent the generator dynamics while 

(3.5)-(3.7) represent the exciter dynamics.

3.1.2   Stator algebraic equations. The stator algebraic equations follow the dynamic 

equivalent circuit given in Fig. 3.1. Application of KVL yields the stator algebraic 

equations:
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'
dijX siR ( / 2)( )  ij

di qi Di QiI jI e I jIG S��  �

( / 2)( )  

                

i

i

j
di qi

j
i Di Qi

V jV e

V e V jV

G S

T

��

  �

' ' '

( / 2)'

[ ( )   

       ] i

di qi di qi

j
qi

E X X I

jE e G S�

� �

�

Figure 3.1 Synchronous machine two-axis model dynamic circuit (i = 1,…, m)

( ) ( )
2 20 ( )( ) [ ( ) ]

1,...,

i i
i

j jj
i si di di qi di qi di qi qiV e R jX I jI e E X X I jE e

i m

S SG GT � �
c c c c c � � � � � �

 

-

  
        (3.8)

3.1.3 Network equations. The network equations at the n buses are written as

For generator buses,

      

( ) ( )2

1

( ) ( ) ( )

                          1,.....,

i
i i k ik

n
jj j

i di qi Li i Li i i k ik
k

V e I jI e P V jQ V VV Y e

i m

SGT T T D� � � �

 

� � �  

 

¦                  (3.9)

For load buses,

    ( )

1

( ) ( )       1,......,i k ik

n
j

Li i Li i i k ik
k

P V jQ V VV Y e i m nT T D� �

 

�   �¦                               (3.10)

Equations (3.9) and (3.10) represent the reactive power balance at the generator 

and the load buses. In equation (3.9), 
( )

2( )
i

i
jj

i di qi Gi GiV e I jI e P jQ
SGT � �

� ��    represents the 

complex power injected into the bus by generator i. 

3.1.4 System dimensions and variables. The resultant model comprises of   

x Seven differential equations for each machine i.e 7m differential equations

x One complex stator algebraic equation for each machine or 2m real equations.
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x One complex network equation at each network buses or 2n real equations. 

The total number of equations to be solved is 7m + 2m + 2n. The state and the 

algebraic variables are

x [ , , , , , , ]i i i qi di fdi fi Rix E E E R VG Z c c{                    1,...i m 

x [ , ]dqi di qiI I I{                                                1,...i m 

x [ , ]i iV V T{                1,...i n 

3.2  DAE model representation and numerical solution methods

The DAE model discussed in the last section can be represented in power balance 

or current balance form depending on how the network equations are represented. Power 

balance form uses the polar form for the network variables whereas the current balance 

form uses the rectangular form. The current balance form is more popular in the industry.

3.2.1  Power balance form. On separating the network equations (3.9) and (3.10) into 

real and imaginary parts, we get the following equations

� � � � � �

� �
1

sin cos

cos 0 1,...,

di i i i qi i i i Li i

n

i k ik i k ik
k

I V I V P V

VV Y i m

G T G T

T T D
 

� � � �

� � �   ¦       
            (3.11)

� � � �
1

cos 0 1,...,
n

Li i i k ik i k ik
k

P V VV Y i m nT T D
 

� � �   �¦                                  (3.12)

� � � � � �

� �
1

cos sin

sin 0 1,...,

di i i i qi i i i Li i

n

i k ik i k ik
k

I V I V Q V

VV Y i m

G T G T

T T D
 

� � � �

� � �   ¦      
 (3.13)

� � � �
1

sin 0
n

Li i i k ik i k ik
k

Q V VV Y T T D
 

� � �  ¦ 1,...,i m n �                             (3.14)
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Equations (3.11) and (3.12) represent the real power balance equations at each 

buses while equations (3.13) and (3.14) represent the reactive power balance equations at 

the buses.

The stator algebraic equations are represented in the polar form as given in 

equation (3.15)

� �
� �

'
1

, '

sin

cos
di di i i i

d q i
qi qi i i i

I E V
Z

I E V
G T
G T

�

�

ª º� �ª º
ª º « »« » ¬ ¼ � �¬ ¼ ¬ ¼

1,...,i m                                   (3.15)

Along with the differential equations for the generator, the DAE model can be 

symbolically represented as

                                                       � �,, ,o dqx f x I V u �                                                  (3.16)

                                                   � �,dqI h x V                                                        (3.17)

                                                   � �,0 ,o d qg x I V�                                     (3.18)

The network variables are represented in polar form with the voltage magnitude 

iV and the phase angle iT  as the variables at each bus.

To find the solution for the DAE system, the differential equations are integrated 

from time nt to 1nt �  using the trapezoidal rule while solving the algebraic equations at 1nt � . 

The resulting equations to be solved are in form given in equations (3.19)-(3.21)

1 0 1 , 1 1 1 0 ,[ ( , , , )] [ ( , , , ) 0
2 2n n dq n n n n n dq n n n
t tx f x I V u x f x I V u� � � � �

' '
� � �                   (3.19)

                                          , 1 1 1( , ) 0dq n n nI h x V� � ��                                             (3.20)

                               0 1 , 1 1( , , ) 0n dq n ng x I V� � �                                            (3.21)
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At each time step, equations (3.19)-(3.21) are solved by Newton’s method to 

obtain the state and the algebraic variables.

3.2.2 Current balance form. The current balance form expresses the network 

equations in the form NI Y V where  NY  is the ybus matrix, I is the current injection 

vector and V is the voltage vector. The system equations are obtained by dividing 

equations (3.9) and (3.10) by the complex voltage and then taking the complex conjugate.

� � � � � � � �/ 2 1...,
1

i ik k

i

nP V jQ Vj Li i Li i j jI jI e Y e V e i mdi qi ik kjV e ki

G S D T
T

��� �   
�

 
¦      (3.22)

� � � �
1,...,

1

ik k

i

nP V jQ VLi i Li i j jY e V e i m nik kjV e ki

D T
T

�
  �

�
 
¦                                            (3.23)

For the solution of the DAE system, representation of the network variables and 

equations in the rectangular form provides computational ease for solving equations 

(3.22) and (3.23). Accordingly, the network equations can be symbolically represented as 

                    ( , , )e e e e
dq NI x I V Y V                                                                      (3.24)

where, [ , ]e
i Di QiI I I{ , [ , ]e

i Di QiV V V{  for 1,...,i n . The algebraic stator equations 

are expressed to adapt to the form of network variables as

� �
' sin cos1 1

, ,, ,' cos sin

I E Vdi di Dii iZ Z h x V Vd q i d q i ri i Di QiI Vqi Qii iEqi

G G
G G

ª ºª º ª º�� � ª º« »ª º ª º �  « » « »� � « »¬ ¼ ¬ ¼« »« » « »¬ ¼¬ ¼ ¬ ¼¬ ¼

    (3.25)

Further, the  generator state variables and the stator algebraic variables are 

grouped together to form a new vector [ , ]i i dqiX x I{  and equations (3.19)-(3.20) are 

grouped as

                                         1 1 1( , , , , , ) 0e e
M n n n n n nF X V u X V u� � �                                   (3.26)
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The network equations to be solved at 1nt �  time instant in the form

                                                   1 , 1 1 1( , , )e e e e
n dq n n N nI x I V Y V� � � �                                        (3.27)

Equations (3.26) and (3.27) are solved using the Newton method with the network 

variables solved for first followed by the solution for the state and the stator algebraic 

variables. This process is carried out for each time step.

3.3     Disturbance simulation

Typical large disturbances include faults on the network, line trippings, generator 

outages, load outages etc. Such disturbances are very fast compared to the generator 

dynamics which have large mechanical time constants. The stator equations are also 

algebraic equations and hence respond instantaneously to the disturbance. Hence, the 

network and the stator algebraic variables are solved at the disturbance time to reflect the 

post-disturbance values. This one additional solution at the disturbance time involves the 

solution of the equations 

                                   � � � � � �� �,f
dq d d dI t h x t V t�  �                                            (3.28)

                                � � � � � �� �0 , ,f
d dq d dg x t I t V t � �                                           (3.29)

where the superscript f indicates that the algebraic equations correspond to the 

faulted state and dt  represents the fault time. With the post-disturbance algebraic solution 

thus obtained, the trapezoidal integration process is again resumed.

3.4    Initialization

To start the transient stability simulation in steady state, the network, stator 

algebraic and dynamic variables need to be initialized. A power flow solution is used to 
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obtain the steady state operating point for the network variables. Using the power flow 

solution, the initial values for the dynamic variables are obtained by setting all the 

derivative terms to zero. The initialization of the dynamic variables and the stator 

algebraic variables is discussed in detail in [12].

3.5       Flowchart for transient stability simulation

The flow chart shown in Fig. (3.2) has the the network equations in the power 

balance form. One extra solution, as denoted by the state A, is carried out to reflect the 

instantaneous network and stator current response to the disturbance. Fig. (3.3) shows the 

flowchart for finding out the solution for state A. The same flowchart can be used for the 

current balance form by restructuring the network equations. However, in each iteration 

of the Newton method, the network variables are solved for first followed by the solution 

of the state and the stator algebraic variables. The convergence of the Newton iterations 

is checked for the solution of equation (3.26).
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Figure 3.2  Transient stability simulation flowchart in power-balance Form
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Figure 3.3 Disturbance solution
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CHAPTER 4

INSTANTANEOUS TIME DOMAIN SIMULATION

The operation of a power system involves a continuous interaction of 

electromechanical and electromagnetic energy. During steady state, these energy 

exchanges are not modeled explicitly and the system behavior is represented by voltage 

and current phasors in frequency domain. Events such as switching or faults subject 

components to excessive current and voltage variations. Using a quasi-steady state 

approach, the electromagnetic energy exchanges are ignored and the electromechanical 

energy exchanges captured by modeling the network using phasor voltages and currents. 

However, when there is a large deviation in the frequency, the phasor representation 

becomes no longer valid. To obtain the energy exchanges thereafter, component 

modeling needs to be done at the electromagnetic transients level. Electromagnetic 

transients involve interaction between the magnetic field of inductances and electric field 

of capacitances in the system. These are very fast compared to the electromechanical 

transients which involve energy interactions between the mechanical energy stored in the 

rotating machines and the electrical energy stored in the network. This chapter describes 

the modeling of transmission lines and constant power loads for electromagnetic 

transients simulation.

4.1 Modeling of constant power loads

Constant power loads for steady state studies are modeled by fixed negative 

power injections into the network. There is no dependence of voltage on the constant 

power loads. Such modeling is based on the time period of interest involved in steady 

state studies. 
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Physically however, any device can be thought of as sensing the stimulus first 

before reacting to it. Thus, a load having constant power characteristics reacts to a change 

in the voltage or current after sensing it first.  The quicker it responds, the more closer it 

is to absorbing constant power during the transient state. Our modeling of loads trying to 

absorb constant power is based on this notion. 

Constant power loads are described by real and reactive power absorbed which is 

not an instantaneous term but rather the observation over one cycle of the fundamental 

frequency. Thus, the modeling requires observation of the instantaneous values over one 

cycle. The modeling of a constant power load for instantaneous time domain simulation 

is discussed below.

Consider a constant impedance load drawing complex nominal power 0 0P jQ�  at 

a voltage magnitude 0V  across its terminals. The resistance and inductance of the load is 

given by                                 

                                        
2

0 0

2
0 0

/

/

R V P

L V QZ

 

 
                                                               (4.1)                           

here 2 fZ S  and f is the fundamental frequency. 

For a constant impedance load, if the voltage magnitude decreases, then the 

current drawn decreases and the load power decreases too since the load impedance is 

constant. For a load absorbing constant power however, if the voltage magnitude 

decreases, then the current increases to maintain constant power. This increase in the 

current as the voltage decreases can be modeled by decreasing the load impedance as the 

voltage decreases. Using equation 4.1, loads trying to absorb constant power are modeled 

by changing the resistance and the inductance of the load at each time step. This requires 
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the knowledge of the voltage magnitude 0V  at each time step. A fourier analysis of the 

voltage waveform over one cycle of the fundamental frequency gives the voltage 

magnitude at each time instant. 

If n and n-1 represent the nt and 1nt �  time instants, the resistance and the 

inductance are modified at each time step as 

                                                       
2

1 0

2
1 0

/

( / )
n n

n n

R V P
L V QZ

�

�

 

 
                                      (4.2)

here, the voltage magnitude 1nV �  is calculated by performing a fourier analysis 

over a running window of one cycle of the fundamental frequency. The subscript 

1n � ,associated with the voltage magnitude, indicates that the instantaneous voltages 

over one cycle of fundamental frequency ending at the 1n �  time instant are used for the 

calculation of the voltage magnitude. Thus, the load responds to the voltage magnitude at 

the previous time instant.

4.2 Transmission line modeling

The section describes the modeling of single phase transmission lines. Two 

models are discussed here: Bergeron line model based on traveling wave theory and 

lumped parameter pi line models. 

4.2.1 Bergeron model. Bergeron’s model is an extension of the lossless transmission 

line model by incorporating the distributed series resistance of the line [13]. This type of 

model uses the traveling wave theory. The traveling wave theory is based on the 

phenomenon that energy is transferred along the line in the form of voltage and current 
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waves. Fig. (4.1) shows the propagation of current and voltage waves along a 

transmission line.

Figure 4.1 Propagation of a wave on a transmission line

Y  is the velocity of the traveling wave and d is the length of the line. Assuming a 

lossless distributed parameter line with inductance Lc  and capacitance Cc per unit length 

and solving the wave propagations equations, the transmission line model can be 

represented by a two-port network as shown in the Fig. 4.2

.

Figure 4.2 Equivalent two-port network for a lossless transmission line

CZ CZ
( )kI t W�

   ( )mI t W�

( )kv t ( )mv t

( )kmi t ( )mki t

      k      m

     x=0      x=d

( )kmi t ( )mki t�Yv(x,t)
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C
LZ
C
c

 
c

1

L C
Y  

c c

/ ' 'd d L CW Y  

CZ  is the characteristic impedance of the line, Y is the wave velocity and  W  is 

the time required for the wave to travel from one end to another. The current  ( )kmi t  is

given as

                                        
1

( ) ( ) ( )km k k
C

i t v t I t
Z

W � �                                                (4.3)

where, the current source ( )kI t W� is

                                 
1

( ) ( ) ( )k m mk
C

I t v t i t
Z

W W W�  � � � �                                        (4.4)

Similar expression can be written for the current ( )mki t ,

                                      
1

( ) ( ) ( )mk m m
C

i t v t I t
Z

W � �                      (4.5)

where, the current source ( )mI t W� is

         
1

( ) ( ) ( )m k km
C

I t v t i t
Z

W W W�  � � � �                 (4.6)

As seen from the two port network given in Fig. 4.2, there is no direction

connection between the line ends and the voltages and currents at one end are seen at the 

other end with a time delay equal to W . Thus the line model does not have an 

instantaneous response like that assumed in the lumped parameter lines.
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The Bergeron Model includes the series losses in the lossless line model by 

adding the distributed series resistance Rc  in lumped form. The total line resistance R is 

lumped one-fourth at the line ends and half at the middle of the line. This modeling is 

adequate enough and gives reasonable answers for / 4 CR Z� . The two port network for 

the Bergeron line model is shown in Fig. 4.3. The currents at both ends are given by the 

expressions

1
( ) ( ) ( )

4

km k k

C

i t v t I tRZ
Wc � �

�

1
( ) ( ) ( )

4

mk m m

C

i t v t I tRZ
Wc � �

�

The History term current source ( )kI t Wc �  contains the voltages and the currents at 

both ends of the line and is given by

2

2

( ) ( ( ) ( / 4) ( ))
( / 4)

/ 4
( ( ) ( / 4) ( ))

( / 4)

C
k m C mk

C

k C km
C

ZI t v t Z R i t
Z R

R v t Z R i t
Z R

W W W

W W

�c �  � � � �
�

�
� � � � �

�
          

                   (4.7)

A similar expression can be written for the current source at the other 

end ( )mI t Wc � .

2

2

( ) ( ( ) ( / 4) ( ))
( / 4)

/ 4
( ( ) ( / 4) ( ))

( / 4)

C
m k C km

C

m C mk
C

ZI t v t Z R i t
Z R

R v t Z R i t
Z R

W W W

W W

�c �  � � � �
�
�

� � � � �
�

       
    (4.8)
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Figure 4.3 Bergeron transmission line model

4.2.2 Lumped model. A lumped model transmission line is modeled by lumping the 

distributed parameters. If, Rc , Lc and Cc are the distributed parameters of a line of length

d, then the lumped parameters are obtained by multiplying the distributed parameters 

with the line length. The lumped parameter pi model is shown in Fig. (4.4). The 

relationship between the currents and the voltages at the two ends is obtained by using 

KCL and KVL at the two ends.

                                                 ( ) ( ) ( )ser
k m ser

diL v t v t Ri t
dt

 � �                                      (4.9)

                                           ( ) ( )
2

k
km ser

dvC i t i t
dt

 �                                                   (4.10)

                                           ( ) ( )
2

m
ser mk

dvC i t i t
dt

 �                                                 (4.11)

Where R, L, C are the lumped parameters of the line.

/ 4
CZ
R� / 4

CZ
R�

( )kI t Wc �

   ( )mI t Wc �

( )kv t ( )mv t

( )kmi t ( )mki t
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Figure 4.4 Lumped pi model of a transmission line

The formulation discussed in equations (4.9)-(4.11) can be extended to the 

modeling of three phase transmission lines. In matrix form, the system of equations for 

the three phase pi model transmission line can be written as

                              ,
, , ,[ ] ( ) ( ) [ ] ( )ser abc

k abc m abc ser abc

di
L v t v t R i t

dt
 � �                             (4.12)

                             ,
, ,

[ ]
( ) ( )

2
k abc

km abc ser abc

dvC i t i t
dt

 �                                                  (4.13)

                             .
, ,

[ ]
( ) ( )

2
m abc

ser abc mk abc
dvC i t i t

dt
 �                                                 (4.14)

where,

[ ]
aa ab ac

ba bb bc

ca cb cc

R R R
R R R R

R R R

ª º
« »{ « »
« »¬ ¼

[ ]
aa ab ac

ba bb bc

ca cb cc

L L L
L L L L

L L L

ª º
« »{ « »
« »¬ ¼
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aa ab ac

ba bb cc

ca cb cc

C C C
C C C C

C C C

ª º
« »{ « »
« »¬ ¼

If no coupling is present among the phases then the off-diagonal terms are zero. 

For balanced coupling, the [R], [L] and [C] matrices are symmetrical.

4.3 Generator modeling

The time span of interest decides the modeling of the generator used for studies. 

For the electromagnetic simulation, the fast acting dq axis fluxes and the damper 

windings fluxes are important to analyze the switching oscillations. On the other hand, 

for transient stability studies, which focus mainly on the speed variations, the subtransient 

reactances and the fast acting fluxes are neglected. 

In this thesis, the generator model used for instantaneous time domain simulation 

is the same as that in Chapter 3. However, the interface between the network and 

generator has to be in terms of instantaneous voltages and currents. The interface is based 

on Park’s transformation which involves conversion from phase to dq components and 

vice versa. The park’s transformation matrices are

sin( ) sin( 2 / 3) sin( 2 / 3)2
cos( ) cos( 2 / 3) cos( 2 / 3)3dqT

T T S T S
T T S T S

� �ª º
« »� �¬ ¼

�

1

sin( ) cos( )

sin( 2 / 3) cos( 2 / 3)

sin( 2 / 3) cos( 2 / 3)
dqT

T T
T S T S
T S T S

�

ª º
« »� �« »
« »� �¬ ¼

�

Note that in the above transformation, the zero sequence components are not 

considered as the generator is assumed star ungrounded. The interface between the 
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network and the synchronous machines using Park’s transformation matrices is shown in 

Fig. (4.5).

dqT 1
dqT �

av

bv

cv

ai

bi

ci

dV

qV

dI

qI

MT

refV

fdE

Figure 4.5 Machine-Network interface
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4.4 Solution methodology

For single phase instantaneous time domain simulation or three phase simulation 

without the generator, the system of equations to be solved can be symbolically 

represented as 

                         

( , , )

( , , )

0 ( , , )

net net load

load net load

net load

x z x v x
x d x v x

g x v x

 
 

 

�
�                (4.15)

where,

netx are the network state variables namely the voltage across the 

capacitors and the current through the inductors.

v are the network voltages

loadx are the load state variables namely the current through load 

inductances assuming that the load has a lagging pf.

If the system includes a generator, then the system of equations can be 

represented as

                           

,

( , , )

( , )

( , , , , )

( , , , , )

0 ( , , , )

gen gen dq

dq gen

net gen dq net load

load gen dq net load

gen dq net load

x f x I v
I h x v
x z x I v x x
x d x I v x x

g x I v x x

 

 

 

 

 

�

�
�

                                   (4.16)    

where,

genx are the generator and exciter state variables.

             dqI  are the machine currents in the dq reference frame.

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


40

For the system defined given by equation 4.15, the interface between the 

generator and the network is done using the Parks’ Transformation matrices. This 

interface is shown in Figure 4.5. The generator, exciter state variables and the dq axis 

currents are a part of the equation ( , , , )load gen dq netx d x I v x �  only if the load is attached at 

the generator terminals. Equations 4.15 and 4.16 are solved for the state variables and the 

network voltages at each time instant using a numerical integrator like the trapezoidal 

integrator. In this thesis, MATLAB’s Ode23t solver, which is a variable step size

trapezoidal integrator, has been used to solve these equations because of its robustness.
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CHAPTER 5

SIMULATION RESULTS AND DISCUSSION

For the simulations, Matlab based package MATPOWER ver. 2.0 and Simulink 

6.0 based package Power System Blockset were used. MATPOWER is a package of 

Matlab M-files for solving power flow and optimal power flow problems developed by 

Ray Zimmerman and Deqiang Gan of PSERC at Cornell University. Some of the 

MATPOWER codes were used as support routines for the transient stability code. More 

information on MATPOWER can be found in [14]. Power System Blockset is a Simulink 

based package for analysis of electric power systems. It includes models for generators,

motors, transformers, transmission lines, power electronic equipment etc. Instantaneous 

time domain simulation was done in Simulink using the Power System Blockset library 

blocks. The detailed information on Power System Blockset is given in [15].

The system data for the two bus system is given in Appendix A. The simulations 

done on the two bus system are discussed in the following sections. Throughout this 

chapter, the loading is described in terms of the real power dP .However it should be 

noted that the load used in all the simulations has a power factor of 0.944.
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5.1  Calculation of the steady state loading limit using continuation power flow

Figure 5.1 Test system topology

Figure 5.1 shows the one line diagram of the two bus test system used for 

continuation power flow. It consists of two transmission lines in parallel, Branches 2-3 

and 4-5, with breakers at either ends. Breakers were inserted in the network by using 

fictitious buses 2,3,4,5. The load is a constant power factor PQ load and the generator is 

attached to a swing bus.

Prior to running the transient stability simulations, a continuation power flow was 

run to determine the steady state loadability of the system. Figure 5.2 shows the 

continuation power flow PV curves for the system with both lines in service and one line 

out. The steady state loading limit for the system with one line in service, *
,d ctgcP , was 

found to be approximately 3.53 pu and with both lines in service, *
,d normalP , was around 

7.05. Note that the continuation power flow curves assume that the generator terminal 

voltage is maintained constant at 1.0 pu, however during the transient this is not true.
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Figure 5.2 PV curves from continuation power flow

5.2      Transient stability simulations

For the solution of the DAE system, the network equations were written in the 

power balance form and the generator was modeled using the differential equations 

discussed in Chapter 3.

Figure 5.3 One line diagram of the two bus system for transient stability simulation

*
,d ctgcP

*
,d normalP
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With the continuation power flow as the basis for the transient stability studies, 

the transient stability simulations were carried out by tripping branch 4-5 at 0.2 seconds.

The basic aim of the transient stability simulations was to determine whether the system 

can survive the transient and reach the corresponding steady state operating point on the 

PV curve with one line in service.  The line tripping was modeled by taking out branches 

1-4, 4-5 and 5-6. The load was assumed to hold its constant PQ characteristic throughout 

the transient. The response of the system to line tripping at various loading levels is 

described in the following sections.

5.2.1 Loading upto 2.31 pu. The first simulation involved the transient analysis of the 

system for a loading level of dP  = 1.0 pu. The response of the system to tripping a line is 

shown in Figures 5.4 -5-5.
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Figure 5.4 Voltage magnitude plot for line tripping at dP  = 1.0 pu
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Figure 5.5 Generator speed plot for line tripping at dP  = 1.0 pu

Initially the system is operating at a point corresponding to dP  = 1.0 pu on the 

continuation power flow curve for both lines in service. When one line is taken out of 

service at 0.2 seconds, a one step solution of the algebraic equations is carried out to 

reflect the instantaneous change in the algebraic variables. At this time, a step change in 

the reference voltage to the exciter and the mechanical torque of the generator is done to 

reflect the control variables corresponding to the post-contingency operating point. 

Immediately after switching, there is a drop in the bus voltages. However the voltages 

recover and the system evolves through the transient and settles down at the operating 

point corresponding to dP  = 1.0 pu on the continuation power flow with one line in 
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service. The lowest dip in the load bus voltage is about 0.938 pu while at the generator 

terminals is about 0.98 pu.

Furthermore, it was seen that the system could survive through the transient to 

reach the post-contingency operating point for loading upto dP = 2.31 pu. Figures 5.6-5.7

show the response of the system for dP = 2.20 pu and 2.31 pu.
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Figure 5.6 Voltage magnitude plots for line tripping at dP = 2.20 pu
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Figure 5.7 Voltage magnitude plots for line tripping at dP = 2.31 pu

As seen from the plots, the drop in the bus voltage magnitudes, following the line 

switching, increases as the loading is increased. However, the system is able to survive 

the transient and settles down at the new operating point.

5.2.2 Loading at 2.32 pu. When the system load was increased to 2.32 pu, on 

switching, the DAE system was able to find the one step algebraic solution. But it could 

not find a solution at t = 0.428 seconds. Figures 5.8 and 5.9 show the voltage magnitude 

and the generator speed trajectories for this loading level.
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Figure 5.8 Voltage magnitude plot for line tripping at dP = 2.32 pu
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Figure 5.9 Generator speed plot for line tripping at dP = 2.32 pu
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Looking at Fig. 5.8, it can be seen that the load bus voltage magnitude has 

dropped below 0.65 pu. Intuitively, it can be perceived that the load bus voltage does 

collapse at the next step based on its slope and hence the system is not able to find the 

solution. However, the question arises then Is the generator bus voltage collapsing too? 

Seeing the generator bus voltage magnitude, this cannot be inferred. The continuing of 

the simulation was of paramount importance as only that could reveal the answer to why 

the solution is not converging and what the sequence of events following the non-

convergence is. 

5.2.3 DAE model assumptions validity. The DAE model is based on two major 

assumptions for network modeling. The first one is that the deviation in the frequency is 

small enough to allow the phasor representation. The second one is that all the nodes in 

the network respond instantaneously to the disturbance. We decided to check whether 

these assumptions are true beyond the non-convergence point. A distributed parameter 

line in which the network nodes respond to a disturbance with associated transmission 

line time delays was an alternative to test the instantaneous network response assumption. 

However, the distributed parameter lines required the solution process to be carried out 

using sinusoidal voltages and currents rather than phasors. 

5.3 Instantaneous time domain simulation

In search of answer for the non-convergence of the DAE system, the 

instantaneous time domain simulations were run to match up the continuation power flow 

results. The continuation power flow or the power flow methods assume that the 

generator terminal voltage is fixed. Hence, for the instantaneous time domain simulation, 
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the source was represented by a constant voltage source. The test system used is shown in 

Figure 5.10.

1 6
32

4 5

Figure 5.10 Test system for instantaneous time domain simulation

The transmission lines, Branches 4-5 and 2-3, were modeled as distributed 

parameter lines. Branches 1-2, 1-4, 3-6, 5-6 have breakers which are modeled by a series 

resistance. The load was modeled by a voltage dependent impedance load trying to draw

constant power as discussed in Section 4.1. The data for the system used can be found in 

Appendix A. The loading was progressively increased with the load power factor fixed at

0.944. The response of the system to loading variations is described in the following 

sections.

5.3.1 Pd = 2.0 pu. Figure 5.11 shows the load bus voltage for branch 4-5 tripping 

scenario at this loading level. Branch 4-5 tripping was simulated by opening the breakers 

on branches 1-4 and 4-6. The tripping of the breakers was done at their respective current 

zero crossing. Following the branch tripping, the load power dips as the load is modeled 

as a voltage dependent impedance load based on the voltage magnitude seen at the 

previous time instant. However, the load recovers to draw the rated power eventually and 
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the system settles down at the new steady state value corresponding to the PV curve in 

Fig. 5.2 with one line in service and the loading at 2.0 pu.
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Figure 5.11 Load bus instantaneous voltage for branch 4-5 tripping at dP = 2.0 pu
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Figure 5.12 Load bus voltage magnitude for branch 4-5 tripping at dP = 2.0 pu
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Figure 5.13 Instantaneous power drawn by the load. 
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Figure 5.14 Real and reactive power drawn by the load
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Figure 5.15 Instantaneous load current

5.3.2 Pd = 3.5 pu. The loading was then increased to dP = 3.50 pu. This loading level is 

very close to the loading limit for the system with only one line in service ( *
,d ctgcP = 3.53 

pu). When a line was tripped at this loading level, the system survived the transient and 

settled down at a new steady state operating point. This operating point matches up with 

that shown in the continuation power flow curve with one line in service at a loading 

level of 3.50 pu. Figures 5.16-5.20 show the response of the system to line tripping at this 

loading level.
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Figure 5.16 Load bus instantaneous voltage for branch 4-5 tripping at dP = 3.51 pu
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Figure 5.17 Load bus voltage magnitude
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Figure 5.18 Instantaneous power drawn by the load
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Figure 5.19 Load resistance and inductance
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Figure 5.20 Instantaneous load current

Figure 5.19 shows the load resistance and inductance through the transient. As the 

voltage at the load bus drops, the resistance and the inductance reduce to draw more 

current. The load resistance and inductance settle down at a new steady state value as the 

voltage at the load bus settles down. This new value corresponds to the load impedance 

drawing Pd = 3.50 pu with one line in service.

5.3.3 Pd = 3.55 pu. The Real power loading level was now set to 3.55 pu which is 

beyond the post-contingency loading limit for the system ( *
,d ctgcP = 3.53 pu).
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Figure 5.21 Load bus voltage collapse for branch 4-5 tripping at dP = 3.55 pu
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Figure 5.22 Load bus voltage magnitude
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Figure 5.23 Load bus phase angle
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Figure 5.24 Instantaneous power

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


59

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

Time(sec)

R
ea

l P
ow

er
(p

u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

Time(sec)

R
ea

ct
iv

e 
P

ow
er

(p
u)

Figure 5.25 Real and reactive power
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Figure 5.26 Instantaneous load current
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As seen from the plots, at this loading level, there is no post-contingency 

operating point and the load bus voltage collapses. Due to the collapse in the voltage, the 

load cannot maintain its constant power characteristic and the instantaneous power drawn 

by the load drops to zero. The most interesting of the plots is the phase angle plot which 

shows an oscillation in the load bus phase angle as the voltage is collapsing. This 

suggests that the phasor assumption loses its validity at or beyond voltage collapse 

conditions. The instantaneous current, shown in Figure 5.26, settles down at a new value 

which is equal to the current drawn with the load shorted.

5.3.4 Voltage collapse capturing using lumped model. Use of a lumped parameter 

line instead of a distributed parameter line revealed that the voltage collapse can be 

captured using this model too. Figures 5.27-5.31 show the response of the system at the 

loading level of  Pd = 3.55 pu using lumped parameter model.
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Figure 5.27 Load bus instantaneous voltage
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Figure 5.28 Load bus voltage magnitude
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Figure 5.29 Load bus phase angle

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Time(sec)

In
st

an
ta

ne
ou

s 
po

w
er

 d
ra

w
n 

by
 th

e 
lo

ad
(p

u)

Figure 5.30 Instantaneous power
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Figure 5.31 Real and reactive power

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


63

5.4 Two bus system with a generator model in instantaneous time domain

The source used for single phase instantaneous time domain simulation was a 

constant voltage source which is not a realistic source model. Three phase synchronous 

generators supply power in an electrical network and not constant voltage sources. 

Hence, the next step in the series of simulations involved setting up the two bus system in 

Instantaneous Time Domain Simulation with the generator included. For this purpose, 

modeling of the generator in SIMULINK required the three phase modeling of the 

system. The generator was modeled using the differential equations discussed in Chapter 

3 and the generator-network interface discussed in Chapter 4. A three phase pi model 

from the Power System Blockset was used to model transmission lines on Branches 2-3 

and 4-5. Three phase breaker models were used for the breakers on branches 1-2, 1-4, 3-6 

and 5-6. The tripping of Branch 4-5 was modeled by opening the breakers on Branch 5-6 

first followed by the opening of the breakers on Branch 1-4. The load was modeled as a 

balanced three phase star connected voltage dependent impedance load. To keep the load 

balanced at all times, the resistances and the inductances were updated based on the 

positive sequence voltage magnitude at the load bus as:

2
, 1

,
0

2
, 1

,
0

pos n
abc n

pos n
abc n

V
R

P
V

L
QZ

�

�

 

 

where, 

n and n-1 are the time instants nt and 1nt �

                       abcR  is the load resistance and abcL is the load inductance
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posV  is the positive sequence voltage magnitude at the load bus

0 0,P Q  are the nominal real and reactive powers

The subscript 1n �  used with the positive sequence voltage magnitude denotes 

that the calculation of posV  is based on the instantaneous three phase voltages over one 

cycle of fundamental frequency ending at 1nt � .

The initialization of this system was done using a power flow solution followed 

by an initialization of the generator variables. The loading for the system was set at dP = 

2.32 pu with a load pf of 0.9444, the loading at which a transient voltage collapse occurs. 

On observing the positive sequence load bus voltage magnitudes, the voltage magnitude 

seemed to recover instead of collapsing for this loading level. When the response of the 

real and reactive load power was seen, it was found that the load was reacting much 

slowly or with a larger delay to the change in the voltages.

Figure 5.32 Positive sequence load bus voltage magnitude recovering for a 
loading dP = 2.32 pu
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When the response of the real and reactive load power was seen, it was found that 

the load was reacting much slowly or with a larger delay to the change in the voltages.

Figure 5.33 Positive sequence real and reactive power. dP = 2.32 pu

On increasing the load to dP = 2.35 pu, it was seen that the tripping of branch 4-5 

at this loading level, causes a voltage collapse at the load bus. The collapse plots are 

shown in figures 5.34-5.35.
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Figure 5.34 Positive sequence load bus voltage Magnitude. dP = 2.35 pu

Figure 5.35 Positive sequence real and reactive power. dP = 2.35 pu

5.5 Capturing voltage collapse using voltage dependent impedance load in
transient stability simulations

The instantaneous time domain simulation results showed that the voltage 

collapse can be captured. The simulation results concurred with the continuation power 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

2.5

Tim e(sec)

P
os

iti
ve

 S
eq

ue
nc

e 
R

ea
l P

ow
er

(p
u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

Tim e(sec)

P
os

iti
ve

 S
eq

ue
nc

e 
R

ea
ct

iv
e 

P
ow

er
(p

u)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tim e(sec )

Lo
ad

 B
us

 P
os

iti
ve

 S
eq

ue
nc

e 
V

ol
ta

ge
 M

ag
ni

tu
de

(p
u)

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP


67

flow results. Beyond the steady state loading limit with one line in service, the load bus 

voltage collapses. The phasor assumption does not hold true at and beyond the collapse 

voltage level. Constant power load was modeled as a voltage dependent impedance load 

in instantaneous time domain simulation. Using this load model, it was found that the 

voltage collapse could be captured. This load model was then implemented back in the 

Transient Stability Simulation to investigate whether such a load model could capture the 

voltage collapse trajectories.

 The modeling of a constant power load modeled as a voltage dependent 

impedance load for Transient Stability simulations is discussed in the following 

paragraphs.

If n represents the time instant nt  then a static impedance load is modeled in 

transient stability simulations as

                                                             
2

2

n p n

n q n

P k V

Q k V

 

 
                                                          (5.1)

where,

0
2

0

0
2

0

p

q

Pk
V
Qk
V

{

{

nP  is the real power drawn by the load at the thn time instant.

nQ is the reactive power drawn by the load at the thn time instant.

0P  is the nominal load real power.

0Q  is the nominal reactive power.
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0V  is the nominal voltage magnitude

,p qk k are the load conductance and susceptance respectively which remain fixed 

for a constant impedance load. For a voltage dependent impedance load trying to draw 

constant power, these parameters have to increase as the voltage decreases. Using the 

concept of the load responding after it sees a change in the voltage; ,p qk k values were 

modified at each time instant as 

                      

0
, 2

0
, 2

p n
n delay

q n
n delay

Pk
V

Qk
V

�

�

{

{
                        (5.2) 

where, 1n �  is the time instant 1nt � , 1nV �  is the voltage magnitude at 1nt � , and 

delay is the time required for the load impedance to change for a change in the load bus 

voltage.

To match up the delay in the load power recovery in the three phase instantaneous 

time domain simulation, transient stability simulation at this loading level was done by 

varying the delay. It was found that a delay of half a cycle or 0.8333 seconds closely 

matched with the results from the instantaneous time domain simulation. This delay 

found is related to the load time constant and has to be investigated in the future. The 

comparison of the transient stability simulation and instantaneous time domain 

simulations is shown in Figure 5.36 and 5-37.
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Figure 5.36 Positive sequence load Bus voltage magnitude. dP = 2.32 pu
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Figure 5.37 Positive sequence real power. dP = 2.32 pu

The large difference in the real power just after the switching instant as shown in 

Figure 5.37 is due to the difference in the modeling of the load in the two simulations. 
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While the load is modeled as constant impedance at switching in the transient stability 

simulation, the load is modeled as a positive sequence voltage magnitude dependent load 

in the instantaneous time domain simulation.

The loading was then increased to dP = 2.35 pu to see whether the system can 

handle this load. The response of the system from Transient Stability Simulation and 

Instantaneous Time Domain Simulation is shown in figures 5.38-5.39.
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Figure 5.38 Voltage collapse at the load bus for line tripping at dP = 2.35 pu
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Figure 5.39 The load cannot recover as the voltage collapses at the load Bus. 

As seen from figures 5.38-5.39, the load bus voltage collapses for branch 4-5 

switching at a loading level of dP = 2.35 pu.

For capturing the voltage collapse trajectories for loads which maintain constant 

power throughout the transient, the load delay was reduced to 0.1 millisecond so that the 

voltage dependent impedance load follows the constant power characteristic closely. The 

response of the system at a loading level of dP = 2.32 pu is shown in Figures 5.40-5.42
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Figure 5.40 Collapse of load bus voltage captured in transient stability simulations      
using voltage dependent impedance load model.
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Figure 5.41 Phase angle oscillations at the load bus
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Figure 5.42 Power drawn by the load

As seen from Figures 5.40-5.42, the voltage collapse is captured in transient 

stability simulations using a voltage dependent impedance load with a small time delay.

The delay used in this case was 0.1 millisecond. At switching instant, there is a drop in 

the real and reactive power because the impedance of the load is equal to the pre-

contingency impedance value. This impedance is changed at the time step following the 

switching. The real and reactive powers recover to their nominal values but cannot be 

maintained constant around 0.445 seconds. This is because the low voltage at the load 

bus is insufficient to maintain a constant power load and experiences a collapse. As seen 

from Figure 5.41, the load bus phase angle shows large oscillations confirming the phasor 

assumption is violated. The generator bus voltage does not collapse and it seems to settle 

down near 0.6 pu.  
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Thus, it can be inferred that for a loading of dP = 2.32 pu, the system does 

experience a transient voltage collapse with a constant power load at the load bus. This 

collapse is captured by modeling a constant power load as a voltage dependent 

impedance load model. Figures 5.43-5.44 show the response of the system at the loading 

level of dP = 2.31 pu and 2.35 pu with the load modeled as a voltage dependent 

impedance load. Figure 5.43 shows that for a loading of dP = 2.31, which is below the 

critical loading level of the system ( dP = 2.32 pu), the system survives the transient and 

settles down at a new steady state operating point. For a loading of 2.35 pu, the system 

experiences a voltage collapse at the load bus as shown in Figure 5.44.
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Figure 5.43 Generator and load bus voltage magnitude for dP = 2.31 pu
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Figure 5.44 Collapse of the load bus voltage for dP = 2.35 pu

5.6 Non-convergence of the transient stability simulation for constant power 
loads  on switching

On increasing the load upto dP = 2.48 pu, the transient stability simulation failed 

to converge at the switching instant. In the transient stability simulation, a one step 

solution of the algebraic system in the DAE model is carried out to compute the 

instantaneous response of the network on switching. This one step solution did not 

converge at the switching instant
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Figure 5.45 Non-convergence of the algebraic simulation at switching for dP = 2.48 pu

 To investigate this non-convergence, a continuation power flow, with only one 

line in service, was run with the generator modeled with the internal voltage source as 

given in Figure 5.46. This is the same internal voltage source as used for the stator 

algebraic equations and is also shown in Figure 3.1
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Figure 5.46 Interface of the generator terminal voltage and the internal voltage source of 
the generator

The algebraic system did not 
converge on switching
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The internal voltage source of the generator can be decomposed in two parts; the 

first one involving the dynamic state variables which does not change instantaneously on 

switching, the second consists of the algebraic variable qI which changes on switching.

Hence the internal voltage source of the generator changes instantaneously on switching.

For the continuation power flow, an internal voltage source corresponding to the 

post-switching solution for a loading of 2.47 pu was used and kept fixed. This loading 

was selected because beyond this loading, the algebraic system did not converge on 

switching. The continuation power flow plot for this simulation is shown in Figure 5.47.
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Figure 5.47 Continuation power flow plot with the internal voltage source of the 
generator fixed
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,4 5d switchingP � |2.4785 
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As seen from Figure 5.47, the nose point for the continuation power flow curve is 

about 2.4785 pu which is less than 2.48 pu, the loading at which the transient stability 

simulation stops on switching. Thus, when a line is tripped at the loading level of 2.48 pu, 

the system is operating beyond the collapse and hence the transient stability simulation 

fails to converge on switching.

5.7     Conclusions

The conclusion of the results from this chapter can be summarized as follows:

x Results on the two bus system with constant voltage source and voltage 

dependent impedance load show that instantaneous time domain simulation 

can capture the voltage collapse beyond the steady state loading limit. The

results agree with the continuation power flow. 

x The voltage collapse can be also captured using a lumped parameter line 

instead of a distributed parameter line in instantaneous time domain 

simulation. Thus, voltage collapse can be captured even if an instantaneous 

network response is assumed.

x At or beyond voltage collapse conditions, the phasor assumption loses its 

validity.

x Simulations in three phase instantaneous time domain show that at the critical 

loading limit of 2.32 pu, the system recovers for a balanced three phase star 

connected load. 

x Implementation of the voltage dependent impedance load in the transient 

stability simulations show that such a load model captures the voltage collapse 

trajectories. By varying the load response time in the transient stability 
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simulation, it was found that the balanced three phase voltage dependent 

impedance was responding to the change in the voltage approximately after 

half a cycle. By using a small delay (0.1 milliseconds), voltage collapse for

constant power load could be closely followed too. 

x The non-convergence of the transient stability simulations on switching is   

because immediately after switching, the operating point is beyond the 

loading limit for the system. This result is supported by the continuation 

power flow method.
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CHAPTER 6

CONTRIBUTIONS AND FUTURE WORK

This thesis presented the transient analysis of power system with an aim of 

capturing the voltage collapse dynamics. The contributions of this thesis towards the 

target aimed are summarized below:

x Provided a new confirmation of the steady state voltage collapse via 

instantaneous time domain simulation

x Demonstrated that voltage collapse dynamics can be simulated accurately 

with both distributed and lumped parameter differential network models with 

voltage dependent impedance loads.

x Verified the weakening of the steady state phasor assumption under voltage 

collapse.

x Presented a thorough simulation of the two-bus, two-branch model in three -

phase with a detailed generator model and voltage dependent impedance load.

x Proposed a crude strategy for tuning voltage dependent impedance loads in 

DAE Transient Stability Simulations to “match” the instantaneous behavior.

x Confirmed the failure mechanism of the DAE Transient Stability Simulation

when post-switching solutions are not found with constant power loads.

Based on the results of this thesis and the associated work done, the future work

can be visualized along the following lines:

x For capturing voltage collapses having slowly decaying characteristics, the 

transient stability simulations can be used. However, for non-convergence 

during the switching event, the instantaneous time domain simulation can be 
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used to guide the transient stability simulation. For large scale systems 

though, modeling the entire system in instantaneous time domain is

inefficient. Thus, hybridization of the transient stability and instantaneous 

time domain simulation needs to be done to capture local and wide-spread 

voltage collapse. The hybrid concept involves modeling of most of the system 

using transient stability simulators and the critical part modeled in 

instantaneous time domain. Such a strategy is discussed in [13] for HVDC 

lines interfacing or for interfacing power electronic equipments with the 

network.

x The modeling of other power system equipments like tap-changing 

transformers, governors, different exciters, over excitation limiters, power 

system stabilizers, etc. need to be modeled to get a more realistic 

representation of the power system in the Transient Stability Simulations as 

well as the Instantaneous Time Domain Simulation.

x The voltage dependent impedance model has been tested on a two-bus system 

however, it needs to be tested on bigger systems and different transient 

scenarios. The response time of the voltage dependent impedance load is also 

a critical issue that needs to be investigated to get a better understanding of the 

load response. For a system in which the loads respond with different time 

delays, an efficient step size of the transient stability simulation needs to be 

determined to do a fast and accurate simulation.

x The distance to transient voltage collapse needs to be investigated for its 

prevention.
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APPENDIX  A

TWO BUS SYSTEM DATA
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Figure A.1 Test system topology

Table A.1 Base case load flow results for the two bus system

Bus # Voltage(pu)
PG

(pu)

QG

(pu)

- PL

(pu)

-QL

(pu)

1 (swing) 1.0 0o� 1.0047 0.00546 - -

2 (P-Q) 0.995 0.002o� - - - -

3 (P-Q) 0.98628 2.722o�� - - - -

4 (P-Q) 0.995 0.002o� - - - -

5 ( ”) 0.98628 2.722o�� - - - -

6 ( ”) 0.98578 2.711o�� - - 1 0.35
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Table A.2 Exciter data

Parameters Value

AK 20

AT (sec) 0.2

EK 1.0

ET  (sec) 0.314

FK 0.063

FT (sec) 0.35

Table A.3 Machine data

Parameters Value

H (sec) 8.3

dX (pu) 0.146

dX c (pu) 0.0608

qX (pu) 0.4360

'
qX (pu) 0.0969

'
doT (sec) 8.96

0qT c (sec) 0.31

sR (pu) 0.00576

D (pu) 2
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Table A.4 Branch data 

Branch Resistance(pu) Reactance(pu) Susceptance(pu)

1-2 0.001 - -

1-4 0.001 - -

3-6 0.001 - -

5-6  0.001 - -

2-3 0.006822 0.094838 0.17538

4-5 0.006822 0.094838 0.17538

Table A.5 Transmission line distributed parameters

Branch
Rc

(per km.)

Lc

(per km.)

Cc

(per km.)

Line Length

(km.)

2-3 .6861E-04 2.5226E-06 4.6454E-06 100

4-5 .6861E-04 2.5226E-06 4.6454E-06 100
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